Secuencian genoma de la cobra real, la serpiente venenosa más grande del mundo

La secuenciación del genoma de la cobra real (Ophiophagus hannah), la serpiente venenosa más grande del mundo, trae consigo promesas para el desarrollo de nuevos fármacos. Se trata de la primera secuenciación genómica de una serpiente venenosa realizado por un equipo internacional de científicos y sus resultados ha sido publicado en el último número de la revista Proceedings of the National Academy of Sciences (PNAS).

Este estudio se publica de forma simultánea al genoma de la serpiente pitón de Birmania (Python molurus bivittatus), no venenosa, lo que ha permitido a los investigadores comparar ambas secuencias de ADN y vislumbrar claves moleculares sobre el origen evolutivo de la producción de veneno en la cobra real.

El investigador del CSIC Juan José Calvete, del Instituto de Biomedicina de Valencia, explica: “Durante su evolución, las serpientes venenosas han desarrollado unas glándulas en las que determinados genes se han ido transformando en toxinas, que más tarde han formado sus venenos. Conocer el mecanismo mediante el cual una proteína ordinaria se transforma en una toxina, podría permitir, en un futuro, reproducirlo en el laboratorio y modificarlo para que en vez de matar, ayude a curar”.

Control de la actividad de los receptores

La cobra real, que habita en los bosques del sureste asiático y se alimenta de otros tipos de serpiente, emplea el veneno como arma química para capturar a sus presas y para defenderse de sus depredadores. Aunque su veneno no es el más potente del reino animal, una mordedura de cobra real puede inyectar suficiente veneno (unos 7 mililitros) como para matar un elefante. Las toxinas de su veneno afectan principalmente a los sistemas cardiovascular y nervioso. Bloquean específicamente receptores vitales para la transmisión nerviosa y la muerte sobreviene por fallo cardíaco y arresto respiratorio.

Neurotoxinas letales aisladas de venenos de cobras y mambas están en fase clínica para el tratamiento de dolor. “El objetivo es poder llegar a emplear ese efecto bloqueador de las toxinas para controlar la actividad de los receptores sobreactivados presentes en algunas enfermedades”, concluye el investigador del CSIC. (Fuente: CSIC)